数据科学家是坑“比任何软件工程师都更擅长统计学、又比任何统计学家都更擅长软件工程”的个编人。许多数据科学家都有统计学背景,码过但在软件工程方面经验很少。程中本文列出了常见的文章10个编码错误,希望你能认真阅读并避免它们。帮填 1. 没有共享代码中引用的坑数据 数据科学既需要代码也需要数据。因此,个编其他人要能够获取数据才能重现结果。码过这听起来是程中很基本的要求,但很多人都忘记和代码一起共享数据。文章 解决方案: 使用d6tpipe(https://github.com/d6t/d6tpipe)共享数据文件和代码,帮填或将二者上传到S3 / web /google drive等或保存到数据库,坑以便收件人可以检索文件(但不要将它们添加到git,个编见下文)。码过 2. 硬编码无法访问的路径 与***个错误类似,如果你对其他人无权访问的路径进行硬编码,他们就无法运行代码并且必须查看许多地方以手动更改路径。 解决方案:使用相对路径,全局路径配置变量,或使用d6tpipe 让你的数据易于访问。 3. 混淆数据与代码 很多人会这么想:由于数据科学代码需要数据,为什么不将它转储到同一目录中?当你这么做的时候,很有可能也会把图像,服务器托管报告和其他垃圾保存到一个目录下。这样就一团乱麻了。 解决方案:将文件夹归类,如数据、报告、代码等。请参阅#5,并使用#1中提到的工具来存储和共享数据。 4. 和源代码一起用Gitcommit命令处理数据 大多数人会在版本控制他们的代码(如果你不这样做,那这也是你犯的错误之一!)。在尝试共享数据时,你可能很想把数据文件添加到版本控制中。这对于非常小的文件是可以的;但是git无法针对数据进行优化,尤其是对大文件来说。 解决方案:使用#1中提到的工具来存储和共享数据。如果你真的想版本控制数据,请参阅d6tpipe, DVC(https://dvc.org/) 和Git Large File Storage(https://git-lfs.github.com/)。 5. 编写函数而不是使用DAGs 说了这么多数据,让我们谈谈实际的代码。 学习编码时学到的亿华云***件事就是函数,因此数据科学代码主要被处理为一系列线性运行的函数。这会导致一些问题。 解决方案:数据科学代码***写为一组相互之间具有依赖性的任务,而不是写为线性链式函数。 使用 d6tflow(https://github.com/d6t/d6tflow) 或airflow(https://airflow.apache.org/)。 6. 写for循环 与函数一样,for循环是学习编码时首先学到的。For循环容易理解,但它们很慢而且过于冗长。这通常表明了你没意识到还有矢量化替代方案。 解决方案: Numpy(http://www.numpy.org/), scipy(https://www.scipy.org/)和pandas(https://pandas.pydata.org/)为大多数你认为可能需要循环的情况提供了矢量化函数。 7. 不写单元测试 随着数据,参数或用户输入的变化,代码可能会中断,有时你甚至注意不到。这可能导致输出错误,如果有人根据输出做决策,那么糟糕的数据将导致错误的决策! 解决方案:使用assert语句检查数据质量。pandas有同等性测试,d6tstack (https://github.com/d6t/d6tstack) 检查数据摄取,d6tjoin (https://github.com/d6t/d6tjoin/blob/master/examples-prejoin.ipynb)检查数据连接。以下是云南idc服务商数据检查示例的代码: 8. 不记录代码 为了急着做分析,你可能囫囵吞枣地弄出结果,然后把结果交给客户或老板;一个星期后,他们找到你说“能改一下这里吗”或“能更新一下这个吗”。这时你看看代码,完全不记得当初为什么这么写了。现在想象一下,其他人还必须运行你的代码…… 解决方案:在提供分析之后,也要花费额外的时间来记录编码时做了什么。你会庆幸自己这么做了的,其他人更会感谢你!这样你会看起来更专业。 9. 将数据保存为csv或pickle格式 回到数据,毕竟我们在谈数据科学。就像函数和for循环一样,CSV和pickle文件很常用,但它们实际上并不是很好。CSV不包含架构,因此每个人都必须再次解析数字和日期。Pickles解决了这个问题但只能在python中使用并且不会被压缩。两者都不是存储大型数据集的好格式。 解决方案: 对数据模式使用 parquet(https://github.com/dask/fastparquet)或其他二进制数据格式,这两者是压缩数据的理想格式。d6tflow自动将任务的数据输出保存为parquet,这样就不用再操心格式问题了。 10. 使用jupyternotebooks笔记本 这一点也许颇具争议:jupyternotebooks和CSV一样普遍。很多人都使用它们。但这并不意味它们就是很好的工具。jupyternotebooks助长了上面提到的软件工程中的坏习惯,特别是: 解决方案: 使用pycharm (https://www.jetbrains.com/pycharm/)和/或spyder(https://www.spyder-ide.org/)。