利用概率的用P异常异常检测算法 异常检测可以作为离群分析的统计任务来对待。 但是中整,如果我们开发一个机器学习模型,开始它可以自动化,现完并且像往常一样可以节省大量时间。检测 有很多异常检测用例。算法 信用卡欺诈检测,用P异常故障机器检测或基于其异常功能的中整硬件系统检测,基于病历的开始疾病检测都是很好的例子。 还有更多用例。现完 并且异常检测的检测使用只会增加。 在本文中,算法我将解释从头开始用Python开发异常检测算法的用P异常过程。 公式和过程 与我之前解释的中整其他机器学习算法相比,这将简单得多。开始 该算法将使用均值和方差来计算每个训练数据的概率。 如果一个训练示例的概率很高,那是正常的。 如果某个训练示例的概率较低,云服务器则为异常示例。 对于不同的训练集,高概率和低概率的定义将有所不同。 稍后我们将讨论如何确定。 如果我必须解释异常检测的工作过程,那非常简单。 (1) 使用以下公式计算平均值: 这里m是数据集的长度或训练数据的数量,xi是一个训练示例。 如果您拥有多个训练功能,那么大多数时候您将需要为每个功能计算平均值。 (2) 使用以下公式计算方差: 此处,mu是从上一步计算得出的平均值。 (3) 现在,使用此概率公式计算每个训练示例的概率。 不要为这个公式中的加号感到困惑! 这实际上是对角线形状的变化。 稍后我们将实现算法时,您将看到它的外观。 (4) 我们现在需要找到概率的阈值。源码库 正如我之前提到的,如果训练示例的概率较低,那么这就是一个异常示例。 低概率是多少概率? 没有通用的限制。 我们需要为我们的训练数据集找到答案。 我们从步骤3中获得的输出中获取一系列概率值。对于每种概率,如果数据是异常或正常的,请找到标签。 然后计算一系列概率的精度,召回率和f1分数。 可以使用以下公式计算精度 召回率可以通过以下公式计算: 在此,"正肯定"是指算法将示例检测为异常并且实际上是异常的情况下的数量。 当算法将示例检测为异常时会出现误报,但事实并非如此。 False Negative表示算法检测到的示例不是异常示例,但实际上,香港云服务器这是一个异常示例。 从上面的公式中,您可以看到更高的精度和更高的召回率总会很好,因为这意味着我们拥有更多的积极优势。 但是同时,如您在公式中所看到的,误报和误报也起着至关重要的作用。 那里需要保持平衡。 根据您所在的行业,您需要确定哪个是您可以容忍的。 一个好的方法是取平均值。 有一个求平均值的独特公式。 这就是f1分数。 f1得分的公式是: 这里,P和R分别是精度和召回率。 我不会详细说明为什么公式如此独特。 因为本文是关于异常检测的。 如果您有兴趣了解有关精度,召回率和f1得分的更多信息,请在此处查看有关该主题的详细文章: 完全了解精度,召回率和F分数概念 如何处理机器学习中偏斜的数据集 根据f1分数,您需要选择阈值概率。 1是完美的f得分,0是最差的概率得分。 异常检测算法 我将使用Andrew Ng的机器学习课程中的数据集,该数据集具有两个训练功能。 我没有使用本文的真实数据集,因为该数据集非常适合学习。 它只有两个功能。 在任何现实世界的数据集中,不可能只有两个功能。 开始任务吧! 首先,导入必要的软件包 导入数据集。 这是一个excel数据集。 此处,训练数据和交叉验证数据存储在单独的表格中。 因此,让我们带来培训数据。 让我们针对第1列绘制第0列。 通过查看此图,您可能知道哪些数据是异常的。 检查此数据集中有多少训练示例: 计算每个特征的平均值。 这里我们只有两个功能:0和1。 输出: 根据上面"公式和过程"部分所述的公式,计算出方差: 输出: 现在使其成为对角线形状。 正如我在概率公式后面的"公式和过程"部分所解释的那样,求和符号实际上是方差的对角线。 输出: 计算概率: 训练部分完成。 下一步是找出阈值概率。 如果该概率低于阈值概率,则示例数据为异常数据。 但是我们需要为我们的特殊情况找出该阈值。 在此步骤中,我们使用交叉验证数据以及标签。 在此数据集中,我们具有交叉验证数据以及单独的工作表中的标签。 对于您的情况,您只需保留原始数据的一部分以进行交叉验证。 现在导入交叉验证数据和标签: 标签是: 我将" cvy"转换为NumPy数组只是因为我喜欢使用数组。 DataFrames也很好。 输出: 在这里," y"的值为0表示这是一个正常的例子,而y的值为1则表示这是一个异常的例子。 现在,如何选择阈值? 我不想只是从概率列表中检查所有概率。 那可能是不必要的。 让我们再检查几率值。 输出: 如您在图片中看到的,我们没有太多异常数据。 因此,如果我们仅从75%的值开始,那应该很好。 但是为了更加安全,我将从平均值开始。 因此,我们将从平均值到较低范围取一系列概率。 我们将检查该范围内每个概率的f1分数。 首先,定义一个函数来计算真实肯定,错误肯定和错误否定: 列出小于或等于平均概率的概率。 检查清单的长度, 输出: 根据我们之前讨论的公式,定义一个函数来计算f1分数: 所有功能都准备就绪! 现在计算所有ε或我们之前选择的概率值范围的f1分数。 输出: 这是f得分列表的一部分。 长度应为133。 f分数通常介于0和1之间,其中1是完美的f分数。 f1分数越高越好。 因此,我们需要从刚刚计算出的" f"分数列表中获得最高的f分数。 现在,使用" argmax"函数确定最大f得分值的索引。 输出: 现在使用该索引来获取阈值概率。 输出: 找出异常的例子 我们有阈值概率。 我们可以从中找出训练数据的标签。 如果概率值小于或等于该阈值,则数据为异常,否则为正常。 我们将正常数据和异常数据分别表示为0和1, 输出: 这是标签列表的一部分。 我将在上面的训练数据集中添加此计算出的标签: 我绘制了红色标签为1以及黑色标签为零的数据。 这是情节。 是否有意义? 是吗? 红色的数据显然是异常的。 结论 我试图逐步解释开发异常检测算法的过程。 我没有在这里隐藏任何步骤。 我希望这是可以理解的。 如果您仅通过阅读就难以理解,建议您在笔记本中自己运行每段代码。 这将使其非常清楚。