当前位置:首页 > 人工智能

Go 泛型基准测试:性能更差还是更好?

Go1.18 已经发布了,泛型泛型终于正式进入了 Go 语言。基准那泛型将如何影响性能?测试让我们通过对几个用例进行基准测试来弄清楚。

关于 Go1.18 新特性的更差文章有很多,讨论也不少。还更好其中一个讨论是泛型我想写的一个主题,即泛型对性能有什么影响?基准许多读者担心泛型会降低性能,但我的测试观点是泛型会提高性能。我的更差观点背后的原因是泛型将允许我们在运行时跳过类型转换、断言和反射,还更好而是泛型依赖编译器在编译时决定这个问题。

Go 泛型基准测试:性能更差还是更好?

在我关于学习泛型[1]的基准文章中,我解释了泛型的测试用法,两个主要好处是更差减少了基于数据类型的重复函数并避免了interface{ }. 这些是我们将在本文中进行基准测试的用例,以发现更改的还更好性能。

Go 泛型基准测试:性能更差还是更好?

说明下:我不是基准测试专家。我只是亿华云一个基准测试菜鸟。在我看来,基准测试非常困难。

Go 泛型基准测试:性能更差还是更好?

为了做出公平的基准测试,我们将为每个用例设置一个测试用例。这将意味着我们将:

使用重复函数进行基准测试使用泛型进行基准测试使用使用 interface{ } 进行基准测试准备函数进行基准测

试我们将重用学习泛型[2]中的一些代码,在其中,我们有一个Subtract函数可以减去三种Subtractable数据类型之间的值。

我们将要确定哪些 Subtract 方法性能最好。可以在 Playground[3] 尝试一下。

package functions

// Subtract will subtract the second value from the first

func SubtractInt(a, b int) int {

return a - b

}

// Subtract64 will subtract the second value from the first

func SubtractInt64(a, b int) int {

return a - b

}

// SubtractFloat32 will subtract the second value from the first

func SubtractFloat32(a, b float32) float32 {

return a - b

}

// SubtractTypeSwitch is used to subtract using interfaces

func SubtractTypeSwitch(a, b interface{ }) interface{ } {

switch a.(type) {

case int:

return a.(int) - b.(int)

case int64:

return a.(int64) - b.(int64)

case float32:

return a.(float32) - b.(float32)

default:

return nil

}

}

// Subtract will subtract the second value from the first

func Subtract[V int64 | int | float32](a, b V "V int64 | int | float32") V {

return a - b

}

在那里,我们将开始对功能进行基准测试。它们应该相当容易理解,并且我们涵盖了减法、基于数据类型、类型切换和泛型的可能解决方案。

准备基准测试

创建一个常规的测试文件,我们可以在其中存储基准,如果你熟悉 Go 中的基准,你可以阅读这里的教程[4]。

在基准测试的顶部,我将生成两个切片,一个随机整数切片,一个随机 float32 切片。这些随机切片将用作减法方法的亿华云计算输入参数。

然后我们创建一个b.Run函数,它会一次触发一个函数,次数与我们设置为基准测试器的次数一样多,使用-benchtime标志运行。对于这个基准测试,我将强制基准测试器运行每个函数 1000000000 次。如果你未指定运行函数的次数,则基准测试程序会在特定时间内尽可能多次地运行该函数。这将以它们没有运行相同数量的操作而告终,我希望它们这样做。

这就是我最终的基准测试的样子。

用于执行基准测试以确定泛型性能影响的测试文件。

package functions

import (

"math/rand"

"testing"

"time"

)

// Benchmark_Subtract is used to determine the most performant solution to subtraction

func Benchmark_Subtract(b *testing.B) {

// Create a slice of random numbers based on the number of iterations set

// to test the performance of the function

// Default iterations for me is 1000000000

// b.N is always 1 so we can use that to set the number of iterations

numbers := make([]int, 1000000001)

floatNumbers := make([]float32, 1000000001)

// Create a random seed

seed := rand.NewSource(time.Now().UnixNano())

// Give the seed to the random package

randomizer := rand.New(seed)

for i := 0; i < b.N; i++ {

// randomize numbers between 0-100

numbers[i] = randomizer.Intn(100)

floatNumbers[i] = float32(randomizer.Intn(100))

}

// run a benchmark for regular Ints

b.Run("SubtractInt", func(b *testing.B) {

for i := 0; i < b.N; i++ {

SubtractInt(numbers[i], numbers[i+1])

}

})

// run a benchmark for regular Floats

b.Run("SubtractFloat", func(b *testing.B) {

for i := 0; i < b.N; i++ {

SubtractFloat32(floatNumbers[i], floatNumbers[i+1])

}

})

// run a benchmark for TypeSwitched Ints

b.Run("Type_Subtraction_int", func(b *testing.B) {

for i := 0; i < b.N; i++ {

SubtractTypeSwitch(numbers[i], numbers[i+1])

}

})

// run a benchmark for TypeSwitched Floats

b.Run("Type_Subtraction_float", func(b *testing.B) {

for i := 0; i < b.N; i++ {

SubtractTypeSwitch(floatNumbers[i], floatNumbers[i+1])

}

})

// run a benchmark for Generic Ints

b.Run("Generic_Subtraction_int", func(b *testing.B) {

for i := 0; i < b.N; i++ {

Subtract[int](numbers[i], numbers[i+1] "int")

}

})

// run a benchmark for Generic Floats

b.Run("Generic_Subtraction_float", func(b *testing.B) {

for i := 0; i < b.N; i++ {

Subtract[float32](floatNumbers[i], floatNumbers[i+1] "float32")

}

})

// run a benchmark where generic type is infered

b.Run("Generic_Inferred_int", func(b *testing.B) {

for i := 0; i < b.N; i++ {

Subtract(numbers[i], numbers[i+1])

}

})

}

在泛型基准测试中,基准测试将测试所有用例中int和float32的减法函数,我添加了第三个选项,推断数据类型。我还想确定如果我们让泛型函数将数据类型推断为int会有怎样的表现。

要运行基准测试,请使用以下命令。请注意,该-count 5参数用于将每个基准测试运行 5 次。这是因为如果你运行每个基准测试一次,香港云服务器你可能会得到不公平的结果。

go test -v -bench=Benchmark -benchtime=1000000000x -count 5分析结果

基准测试将与正在运行的函数的名称一起输出,我们可以使用它来识别不同的函数。第二个值是运行的操作数,在我们的例子中,我们将其设置为固定数字,因此所有行都应该显示相同。

第三个输出很有趣,它是每次操作的纳秒数 (ns/op)。这是显示函数平均速度的指标。

Go 测试工具的基准测试结果。

goos: windows

goarch: amd64

pkg: programmingpercy/benchgeneric

cpu: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz

Benchmark_Subtract

Benchmark_Subtract/SubtractInt

Benchmark_Subtract/SubtractInt-4 1000000000 0.9002 ns/op

Benchmark_Subtract/SubtractInt-4 1000000000 0.8904 ns/op

Benchmark_Subtract/SubtractInt-4 1000000000 0.8277 ns/op

Benchmark_Subtract/SubtractInt-4 1000000000 0.8290 ns/op

Benchmark_Subtract/SubtractInt-4 1000000000 0.8266 ns/op

Benchmark_Subtract/SubtractFloat

Benchmark_Subtract/SubtractFloat-4 1000000000 0.8591 ns/op

Benchmark_Subtract/SubtractFloat-4 1000000000 0.8033 ns/op

Benchmark_Subtract/SubtractFloat-4 1000000000 0.8108 ns/op

Benchmark_Subtract/SubtractFloat-4 1000000000 0.8168 ns/op

Benchmark_Subtract/SubtractFloat-4 1000000000 0.8040 ns/op

Benchmark_Subtract/Type_Subtraction_int

Benchmark_Subtract/Type_Subtraction_int-4 1000000000 1.597 ns/op

Benchmark_Subtract/Type_Subtraction_int-4 1000000000 1.711 ns/op

Benchmark_Subtract/Type_Subtraction_int-4 1000000000 1.607 ns/op

Benchmark_Subtract/Type_Subtraction_int-4 1000000000 1.570 ns/op

Benchmark_Subtract/Type_Subtraction_int-4 1000000000 1.588 ns/op

Benchmark_Subtract/Type_Subtraction_float

Benchmark_Subtract/Type_Subtraction_float-4 1000000000 1.320 ns/op

Benchmark_Subtract/Type_Subtraction_float-4 1000000000 1.311 ns/op

Benchmark_Subtract/Type_Subtraction_float-4 1000000000 1.323 ns/op

Benchmark_Subtract/Type_Subtraction_float-4 1000000000 1.424 ns/op

Benchmark_Subtract/Type_Subtraction_float-4 1000000000 1.321 ns/op

Benchmark_Subtract/Generic_Subtraction_int

Benchmark_Subtract/Generic_Subtraction_int-4 1000000000 0.8251 ns/op

Benchmark_Subtract/Generic_Subtraction_int-4 1000000000 0.8288 ns/op

Benchmark_Subtract/Generic_Subtraction_int-4 1000000000 0.8420 ns/op

Benchmark_Subtract/Generic_Subtraction_int-4 1000000000 0.8377 ns/op

Benchmark_Subtract/Generic_Subtraction_int-4 1000000000 0.8357 ns/op

Benchmark_Subtract/Generic_Subtraction_float

Benchmark_Subtract/Generic_Subtraction_float-4 1000000000 0.7952 ns/op

Benchmark_Subtract/Generic_Subtraction_float-4 1000000000 0.7987 ns/op

Benchmark_Subtract/Generic_Subtraction_float-4 1000000000 0.7877 ns/op

Benchmark_Subtract/Generic_Subtraction_float-4 1000000000 0.8037 ns/op

Benchmark_Subtract/Generic_Subtraction_float-4 1000000000 0.8283 ns/op

Benchmark_Subtract/Generic_Inferred_int

Benchmark_Subtract/Generic_Inferred_int-4 1000000000 0.8297 ns/op

Benchmark_Subtract/Generic_Inferred_int-4 1000000000 0.8283 ns/op

Benchmark_Subtract/Generic_Inferred_int-4 1000000000 0.8319 ns/op

Benchmark_Subtract/Generic_Inferred_int-4 1000000000 0.8366 ns/op

Benchmark_Subtract/Generic_Inferred_int-4 1000000000 0.8623 ns/op

PASS

ok programmingpercy/benchgeneric 37.114s

从结果中,我们可以确定类型断言函数要慢得多。它*慢了大约 50-90%*。在这个测试用例中,这似乎很荒谬,因为我们谈论的是半纳秒。

泛型函数的执行与特定于数据类型的函数大致相同,但速度略有提高。速度的这种小幅提高可能是由于我计算机上运行的其他软件。以我的心态,我认为编译器完成其工作后,泛型函数调用应该与常规函数调用相同。

我们可以在结果中看到的另一个要点是int减法比float32减法更耗时。常规int减法的平均速度为 0,85478 ns/op,常规float32减法的平均速度为0,8188 ns/op。这意味着在我的基准测试中,float32减法大约快 5% 。

因此,该基准的关键要点是:

根据我的观点,类型断言/类型转换解决方案最慢泛型和常规数据类型函数的性能相同Float32减法比int快以真实场景为基准

让我们比较一个真实的场景。在用例中,我们有两个有 Move 的结构Person,Car。这两个结构都有一个Move接受距离的函数,但是,Person 距离被传递为float32 而 Car 接受一个int。

这两种结构都在同一个工作流中处理,因此我们希望在同一个函数中处理它们。

对此的泛型解决方案是创建泛型结构,我们可以在其中定义要在创建时使用的数据类型。接口解决方案是接受结构作为输入,并对它们进行类型断言并转换正确的数据类型。我们不能为它们提供共享接口,因为数据类型不一样。

在代码示例中,有一个泛型和旧类型断言解决方案的实现,类型断言带有后缀Regular,因此我们可以更容易地知道什么与什么解决方案相关。

在具有不同数据类型的Cars和Persons 上执行 Move 的泛型解决方案。

package benchmarking

// Subtractable is a type constraint that defines subtractable datatypes to be used in generic functions

type Subtractable interface {

int | int64 | float32

}

// Moveable is the interace for moving a Entity

type Moveable[S Subtractable] interface {

Move(S)

}

// Car is a Generic Struct with the type S to be defined

type Car[S Subtractable] struct {

Name string

DistanceMoved S

}

// Person is a Generic Struct with the type S to be defined

type Person[S Subtractable] struct {

Name string

DistanceMoved S

}

// Person is a struct that accepts a type definition at initialization

// And uses that Type as the data type for meters as input

func (p *Person[S]) Move(meters S) {

p.DistanceMoved += meters

}

func (c *Car[S]) Move(meters S) {

c.DistanceMoved += meters

}

// Move is a generic function that takes in a Generic Moveable and moves it

func Move[S Subtractable, V Moveable[S]](v V, meters S "S Subtractable, V Moveable[S]") {

v.Move(meters)

}

类型断言方案的 Move:

package benchmarking

// Below is the Type casting based Solution

//

type CarRegular struct {

Name string

DistanceMoved int

}

type PersonRegular struct {

Name string

DistanceMoved float32

}

func (p *PersonRegular) Move(meters float32) {

p.DistanceMoved += meters

}

func (c *CarRegular) Move(meters int) {

c.DistanceMoved += meters

}

func MoveRegular(v interface{ }, distance float32) {

switch v.(type) {

case *PersonRegular:

v.(*PersonRegular).Move(distance)

case *CarRegular:

v.(*CarRegular).Move(int(distance))

default:

// Handle Unsupported types, not needed by Generic solution as Compiler does this for you

}

}

现在我们已经有了解决方案,是时候开始基准测试了。我将在基准测试之前创建 Persons 和 Cars,我们将测量Move 和MoveRegular 的性能。

package benchmarking

import "testing"

func Benchmark_Structures(b *testing.B) {

// Init the structs

p := &Person[float32]{ Name: "John"}

c := &Car[int]{ Name: "Ferrari"}

pRegular := &PersonRegular{ Name: "John"}

cRegular := &CarRegular{ Name: "Ferrari"}

// Run the test

b.Run("Person_Generic_Move", func(b *testing.B) {

for i := 0; i < b.N; i++ {

// generic will try to use float64 if we dont tell it is a float32

Move[float32](p, 10.2 "float32")

}

})

b.Run("Car_Generic_Move", func(b *testing.B) {

for i := 0; i < b.N; i++ {

Move(c, 10)

}

})

b.Run("Person_Regular_Move", func(b *testing.B) {

for i := 0; i < b.N; i++ {

MoveRegular(pRegular, 10.2)

}

})

b.Run("Car_Regular_Move", func(b *testing.B) {

for i := 0; i < b.N; i++ {

MoveRegular(cRegular, 10)

}

})

}

我使用以下命令运行测试:

go test -v -bench=Benchmark_Structures -benchtime=1000000000x -count 5

运行基准测试的结果:

goos: windows

goarch: amd64

pkg: programmingpercy/benchgeneric

cpu: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz

Benchmark_Structures

Benchmark_Structures/Person_Generic_Move

Benchmark_Structures/Person_Generic_Move-4 1000000000 4.690 ns/op

Benchmark_Structures/Person_Generic_Move-4 1000000000 4.668 ns/op

Benchmark_Structures/Person_Generic_Move-4 1000000000 4.727 ns/op

Benchmark_Structures/Person_Generic_Move-4 1000000000 4.664 ns/op

Benchmark_Structures/Person_Generic_Move-4 1000000000 4.699 ns/op

Benchmark_Structures/Car_Generic_Move

Benchmark_Structures/Car_Generic_Move-4 1000000000 3.176 ns/op

Benchmark_Structures/Car_Generic_Move-4 1000000000 3.188 ns/op

Benchmark_Structures/Car_Generic_Move-4 1000000000 3.296 ns/op

Benchmark_Structures/Car_Generic_Move-4 1000000000 3.144 ns/op

Benchmark_Structures/Car_Generic_Move-4 1000000000 3.156 ns/op

Benchmark_Structures/Person_Regular_Move

Benchmark_Structures/Person_Regular_Move-4 1000000000 4.694 ns/op

Benchmark_Structures/Person_Regular_Move-4 1000000000 4.634 ns/op

Benchmark_Structures/Person_Regular_Move-4 1000000000 4.677 ns/op

Benchmark_Structures/Person_Regular_Move-4 1000000000 4.660 ns/op

Benchmark_Structures/Person_Regular_Move-4 1000000000 4.626 ns/op

Benchmark_Structures/Car_Regular_Move

Benchmark_Structures/Car_Regular_Move-4 1000000000 2.560 ns/op

Benchmark_Structures/Car_Regular_Move-4 1000000000 2.555 ns/op

Benchmark_Structures/Car_Regular_Move-4 1000000000 2.553 ns/op

Benchmark_Structures/Car_Regular_Move-4 1000000000 2.579 ns/op

Benchmark_Structures/Car_Regular_Move-4 1000000000 2.560 ns/op

PASS

ok programmingpercy/benchgeneric 75.830s

看到类型断言解决方案比泛型解决方案更快,我有点惊讶。我确保多次运行的基准测试,它不是偶然的。

我们可以从基准中看到,基于 Cars 的 Int 解决方案都比基于 Person 的 float32 的更快。

Person move 方法具有相同的性能,无论是泛型解决方案还是常规解决方案。但是,你可以看到 Cars 的不同之处,类型断言的 Cars 是最快的。类型断言执行比泛型快 20%。

因此,该基准的关键要点如下。

基于浮点的类型具有相同的性能,而类型断言的整数 cars 速度更快,这不是我的观点。Float32 加法比 int 慢。结论

所以,我们现在已经测试了一些我可以看到泛型有用的用例。

老实说,我确实希望第二个基准也能证明泛型更快。这将进一步证明我的说法,即泛型由于是在编译时而不是运行时决定的,因此性能更高。

通过使用泛型或特定于数据类型的函数,我们可以在第一个用例中看到相当大的性能提升。我知道几纳秒可能看起来很荒谬,但是在某些用例中,这些类型的极端优化很重要。我曾经做过一个高性能的网络嗅探器,它必须实时处理大量的网络数据。编写这样的软件将需要所有的优化。

我们已经看到,选择正确的数据类型会对性能产生很大影响。但是,我认为我们可以说,那些表示担心泛型会拖慢软件速度的读者可以冷静下来。从好的方面来说,我看到泛型解决方案允许我们更轻松地交换数据类型,从而提高性能。

另一方面,Go 中的类型断言和类型转换似乎具有超强的性能。

正如我们所看到的,许多因素都会对结果产生影响,例如使用的算术运算符[5]、数据类型等。在我的基准测试中可能会出现我不知道的错误。

原文链接:https://programmingpercy.tech/blog/benchmarking-generics-in-go

参考资料

[1]学习泛型: https://programmingpercy.tech/blog/learning-generics-in-go

[2]学习泛型: https://programmingpercy.tech/blog/learning-generics-in-go

[3]Playground: https://go.dev/play/p/BLU8pHOzmvS

[4]教程: https://betterprogramming.pub/we-measure-the-power-of-cars-computers-and-cellphones-but-what-about-code-91ed5583f298

[5]算术运算符: https://www.techopedia.com/definition/25582/arithmetic-operator

分享到:

滇ICP备2023006006号-16